
3. Fluid Mech. (1996), vol. 313, p p .  309-341 
Copyright @ 1996 Cambridge University Press 

309 

Simple shear flows of dense gas-solid 
suspensions at finite Stokes numbers 

By ASHOK S. SANGANI’ ,  G U O B I A O  MO1, 
H E N G - K W O N G  T S A 0 2  AND D O N A L D  L. KOCH2 
Department of Chemical Engineering and Materials Science, Syracuse University, 

Syracuse, NY 13244, USA 
*School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA 

(Received 7 April 1995 and in revised form 9 November 1995) 

We examine the problem of determining the particle-phase velocity variance and rhe- 
ology of sheared gas-solid suspensions at small Reynolds numbers and finite Stokes 
numbers. Our numerical simulations take into account the Stokes flow interactions 
among particles except for pairs of particles with a minimum gap width comparable 
to or smaller than the mean free path of the gas molecules for which the usual 
lubrication approximation breaks down and particle collisions occur in a finite time. 
The simulation results are compared to the predictions of two theories. The first is an 
asymptotic theory for large Stokes number S t  and nearly elastic collisions, i.e. S t  >> 1 
and 0 < 1 - e << 1, e being the coefficient of restitution. In this limit, the particle 
velocity distribution is close to an isotropic Maxwellian and the velocity variance is 
determined by equating the energy input in shearing the suspension to the energy 
dissipation by inelastic collisions and viscous effects. The latter are estimated by solv- 
ing the Stokes equations of motion in suspensions with the hard-sphere equilibrium 
spatial and velocity distribution while the shear energy input and energy dissipation 
by inelastic effects are estimated using the standard granular flow theory (i.e. S t  = co). 
The second is an approximate theory based on Grad’s moments method for which 
S t  and 1 - e are O(1). The two theories agree well with each other at higher values 
of volume fraction 4 of particles over a surprisingly large range of values of S t .  
For smaller 4, however, the two theories deviate significantly except at sufficiently 
large St .  A detailed comparison shows that the predictions of the approximate theory 
based on Grad’s method are in excellent agreement with the results of numerical 
simulations. 

1. Introduction 
We examine shear flow of a suspension of spherical particles in a viscous gas under 

conditions of vanishingly small Reynolds number Re and finite Stokes number S t .  
Here, Re = pyuz/,u and S t  = yz, where p and p are, respectively, the density and 
viscosity of the gas, y is the magnitude of the shear rate, z, = m/(6npu) is the viscous 
relaxation time of the particle velocity, u is the radius, and m is the mass of the 
particles. 

Tsao & Koch (1995) recently examined this situation for the special case of dilute 
suspensions for which the volume fraction 4 of the particles is small compared to unity. 
These investigators assumed that the hydrodynamic interactions among particles in 
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a dilute suspension would be negligible so that the motion of an individual particle 
could be modelled using Stokes drag law for an isolated particle. The only particle 
interactions considered were elastic collisions. These approximations can be justified 
at sufficiently large S t  and small 4. It was shown that dilute gas-solid suspensions 
show a surprisingly complex behaviour even under these simplifying assumptions. For 
example, two very different steady states occur depending upon S t ,  4, and the initial 
velocity distribution of the particles: an ignited state, in which the variance of the 
particle velocity is very large; and a quenched state, in which most of the particles 
move with the local gas velocity. The ignited state is observed only for S t  > @, 
while multiple steady states for fixed S t  and 4 exist for very dilute suspensions with 
9 < 1.5StP3 and S t  > @. On the other hand, only the quenched state exists for 
S t  < a. These investigators developed a kinetic theory to explain these and other 
interesting observations obtained from simple numerical simulations which neglected 
the hydrodynamic interactions among particles. 

The present investigation has three objectives. First, to show that the theory of Tsao 
& Koch (1995) applies even when the hydrodynamic interactions among particles are 
taken into account at finite S t ;  second, to extend the theory to higher particle volume 
fractions; and third, to account for the case in which the collisions between particles 
are not perfectly elastic but characterized instead by a conventional coefficient of 
restitution e. The purpose of the last objective is to supplement the theory of rapidly 
sheared granular flows ( S t  = 00, e # 1) by including the effects of viscous dissipation. 
Since the theory of granular flows has been developed to a great extent through a 
series of excellent papers in recent years (e.g. Jenkins & Savage 1983; Lun et al. 
1984; Jenkins & Richman 1985; Walton & Braun 1986; Campbell 1989), our primary 
emphasis will on the effects of finite S t .  

The hydrodynamic interactions are determined by solving the Stokes equations of 
motion using the method described in Mo & Sangani (1994) and Sangani & Mo 
(1994). However, when a pair of particles approach each other within a distance 
comparable to the mean free path A of the gas molecules, the Stokes equations no 
longer adequately describe the interactions, and, to account for this, we adopt a model 
in which the viscous forces on the particles with a minimum spacing less than 2ema 
are assumed to be the same as those acting on particles having a spacing 2ema. Thus, 
the simulations are carried out with three parameters: St ,  4 and F,. The last of these 
parameters can be related to A/a using results of calculations of the non-continuum 
lubrication problem (Sundararajakumar & Koch 1996). 

The simulations are compared to two theories. The first is an asymptotic theory for 
large Stokes numbers and small inelasticity, i.e. S t  >> 1 and 1 - e << 1. In this limit, 
the particle velocity distribution is an isotropic Maxwellian to leading order with a 
particle-phase temperature T ,  defined as one-third the particle velocity variance. The 
energy input in shearing the suspension is readily expressed in terms of T through a 
standard expression for the viscosity of a dense gas while the viscous energy dissipated 
is expressed in terms of T and a non-dimensional dissipation coefficient kiss, which as 
a function of 4 and A/a (or equivalently em) is determined from an ensemble average 
for a suspension with a hard-sphere distribution of spatial position and an isotropic 
Maxwellian velocity distribution. This theory is applicable to any linear shear flow. 
The second is an approximate theory for simple shear flow with finite 1 - e, S t ,  and 
4. This theory is based on a moment method introduced by Grad (1949) according to 
which the particle velocity distribution is assumed to be given by a truncated Hermite 
polynomial with unknown second moments of the distribution. These moments are 
then determined from conservation equations for the second moments of the particle 
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fluctuation velocities. This theory agrees well with the theory of Tsao & Koch when 
4 is small and with the aforementioned asymptotic theory when S t  is large and 4 is 
O( 1 ) .  The two theories are in very good agreement with each other at higher volume 
fractions of particles over a surprisingly large range of values of S t .  For smaller 4, 
however, the theories deviate significantly from each other. The predictions based on 
Grad's method are found to be in excellent agreement with the results of numerical 
simulations over a wide range of values of 4, S t / h i s s ,  and e. This is remarkable in view 
of the fact that the theory presented here represents a relatively minor modification to 
the existing granular flow theory while the Stokesian interactions among particles are 
generally far more complicated in nature compared with the solid-body collisional 
interactions in granular flow. The success of the approximate theory suggests that the 
most important role of hydrodynamic interactions is simply to set the rate of energy 
dissipation. 

The organization of the paper is as follows. In $2, we give a brief statement of the 
problem and the governing equations. In $3, we present the asymptotic theory for St 
large compared to unity and e close to unity, and the numerical results for kiss as a 
function of 4 and A/a. In $4, we present an approximate theory for arbitrary S t  and 
4 based on Grad's moment method. In $5, we compare the theories with the results 
of numerical simulations. Finally, in $6 we consider the case of finite S t  and 1 - e. 

2. Governing equations 
As mentioned in the Introduction, we consider the motion of gas-solid suspensions 

under imposed shear in the absence of gravity. The velocity vi of the gas satisfies the 
Stokes equations of motion 

avi 
- = 0, d p  pvvi = -, 

axi 8 X i  

where p is the pressure at point x i  and ,u is the viscosity of the gas. The ensemble- 
averaged velocity of the particles is given by 

(ui) = yijxj, (2.2) 

where y i j  is the mean velocity gradient. The motion of an individual particle satisfies 

d Ui 2 2dQ 
m- = F. -ma - = pi, 

dt " 5 dt 
where Ui and sZi are, respectively, the translational and rotational velocities of the par- 
ticle, t is the time, a is the radius of the particle, and Fi and pi are the hydrodynamic 
force and torque exerted by the gas on the particle. 

Finally, we assume that the continuum approximation given by (2.1) does not apply 
to the gas motion in the narrow gaps between particles separated by distances less 
than 2ema. For such pairs of particles we evaluate Fi and pi by taking the gap width 
to equal 26,a. A relation between ema and the mean free path A of the gas molecules 
is given in $3.1.1.  The collisions between the particles are assumed to be representative 
of smooth particles with a coefficient of restitution e. 

Our goal is to calculate the velocity variance and particle-phase rheology as a 
function of S t  = my/(6n,ua), e, 4, and A/a or equivalently E,. 
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3. Theory for S t  >> 1 and 0 < 1 - e << 1 
The variance of the particle velocity at steady state is determined from the energy 

balance equation for the fluctuating motion of the particles. This energy balance can 
be derived using standard techniques of statistical mechanics, as is done in the rapid 
granular flow literature. Thus, the energy balance is given by (see, for example, Babic 
1993) 
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where p p  is the density of the particle, T is the particle-phase temperature defined as 
one-third of the velocity variance with respect to the ensemble-averaged velocity ( Ui),  
d/dt = + ( U )  V is the time derivative following the average motion, aij is the 
particle-phase stress, qj is the flux of fluctuation energy, and r is the rate of energy 
dissipation per unit volume of the suspension. We are interested in the present section 
in the case of large S t  (equivalent to a large viscous relaxation time) and nearly 
elastic particles. The effect of hydrodynamic interactions among particles is small at 
large S t  and the particles travel in nearly straight lines between successive collisions. 
Thus, the particles are expected to behave similarly to the molecules of a dense gas 
consisting of smooth, spherical molecules with a hard-sphere interaction potential. In 
dense-gas theory the temperature is multiplied by the Boltzmann constant to obtain 
a mechanical equivalent of heat while in the present case of gas-solid flows T is 
directly related to the internal kinetic energy of the suspension. We shall therefore 
use the standard expressions for the equation of state, viscosity, and conductivity of 
dense granular materials and write 

Oij = -P6ij + 2p,eij + (IC - 
aT q .  - -k- 

- axj '  
where 

eij = i ( y i j  + y j i )  (3.4) 
is the rate of strain tensor, P is the particle-phase pressure, ,us and IC are, respectively, 
the coefficients of shear and bulk viscosity, and k is the pseudo-thermal conductivity. 
Using expressions from dense-gas theory, we write 

p = Pp4TU + 44x1, (3.5) 

16 
p s = - p a T  5 n w  p 

112 2 16 
I C =  3X'i2ppaT 4 x,  (3.7) 

where x is the value of the radial distribution function at r = 2a. For a hard- 
sphere distribution, a good approximation to its value for 4 < 0.5 is obtained from 
(Carnahan & Starling 1969) 
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The above results (3.5)-(3.9) are taken from a recent paper by Babic (1993) who has 
put the previously known results for the hard-sphere and hard-disk suspensions in 
a convenient tabulated form. The radial distribution for 4 > 0.5 can be estimated, 
for example, from the approximation x M  given by Ma & Ahmadi (1988) or xw by 
Woodcock (198 1) : 

1.24 

[1 - (4/0.62)1* 
xw = 

1 + 2.54 + 4.59042 + 4.59044' + 4.51514394~ 
9 

XM = 
[l - (4/0.64356)3]0.678021 

(3.10) 
The total energy dissipation rate r is the sum of the energy dissipated due to 

inelastic collisions and that due to finite gas viscosity. The leading-order estimates of 
these can be obtained by assuming that the translational velocity distribution is an 
isotropic Maxwellian. This leads to the well-known estimate of the dissipation due to 
inelastic effects: 

(3.11) 

The rate of viscous energy dissipation in a suspension with a zero mean relative 
motion between the particles and the suspension is expressed in terms of T as 

ruis = -n(F ( U  - ( U ) )  + (52 - (a)) - 9) = 187~panT&~,~, (3.12) 

where n is the number density of the particles and the angular brackets denote 
average over all the particles in the suspension. Here, we have assumed that the 
magnitude of fluctuations in rotational velocity and torque are negligible. Note that 
the above expression for ruis must be corrected for the dissipation arising from the 
affine motion when the mean relative motion is not zero (see Nott & Brady 1994 
for a more complete expression for ruis). We also note that hiss may be interpreted 
as an effective drag coefficient of a sphere moving in a fixed bed of particles. The 
dissipation coefficient hiss as a function of 4 and em will be determined in $3.1. 

We now consider a homogeneous suspension at steady state. The mass conservation 
equation for the particle phase (cf. (4.13)) then requires yii = 0 and the energy 
conservation equation subsequently reduces to 

(3.13) 

Note that for general shear we define y through the last equality in (3.13). According 
to (3.13) the energy input in shearing a homogeneous suspension at steady state 
equals the energy dissipated by viscous and inelastic effects. Substituting (3.6), (3.1 l), 
and (3.12) into (3.13) for ps, rvis, and rinelas, respectively, yields a cubic equation for 
T112, one root of which is negative and hence unphysical, and the other two roots 
correspond to T = 0 and 

(St >> 1, 0 < 1 - e << 1). (3.14) 

For the special case of elastic collisions (e = l), the steady-state variance can be 
evaluated from 

(e = 1, St >> 1). (3.15) 
T112 16 St 
ya 1 5 7 ~ l / ~  hiss 
-- - --4x [1+; (1 + +J2] 



3 14 

st 
Rdiss 
- 

@ 
FIGURE 1. The value of St/&i,  for which the energy dissipations by viscous and inelasticity effects 
become equal in magnitude for various indicated values of the coefficient of restitution e. The 
dashed curve shows the value of S t  for e = 0.97 with hiss determined from (3.18) and a/L = 500. 

When 4 << 1, the above reduces to 

TIP 1 
-= 

ya 16.248 ... (&) (4 << 1, e = 1, S t  >> l), (3.16) 

in agreement with the result derived by Tsao & Koch (1995). The effect of viscous 
dissipation on the granular temperture of the suspension was also studied previously 
by Ma & Ahmadi (1988). These investigators used the Bhatnagar-Gross-Krook 
(BGK) relaxation model for evaluating the collision integral contribution to the 
average moments equation (cf. (4.8)). For small 4 their analysis gave the constant of 
12.58 instead of 16.248.. . in the above expression. Also their analysis suggested using 
the average drag coefficient based on the average hindrance factor in sedimenting 
suspensions in place of kiss which represents the drag coefficient of a sphere suspended 
in a fixed bed of particles. The two drag coefficients, however, differ considerably at 
finite 4 and one must use hiss to correctly predict T .  

Finally, we note that for suspensions with significant inertial effects, the state of 
homogeneous steady suspension cannot be maintained in general for arbitrary shear 
as can be seen from the momentum equation for the particle phase (cf. (4.14)). The 
inertial terms for an arbitrary imposed shear are generally balanced by the particle- 
phase stress gradient which can only occur when the gradients of volume fraction 
and T are non-zero. Thus, a more general analysis must account for linear variation 
in as well as T .  In the limit of large S t  and small 1 - e ,  for which T/(y2a2) is very 
large, it can be shown, however, that the magnitude of the gradient in 4 is small and 
so V ( U )  is small compared with the magnitude of V( U ) .  

The predictions of the above asymptotic theory will be compared with the results 
of simulations in $5. In the next subsection we shall determine hiss. However, first 
it is interesting to obtain a rough criterion for estimating the relative importance of 
viscous and inelastic effects. With T given by (3.14), we can determine the value of 
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S t / h i s s  for given 4 and e at which rvis = rinelas. The results are shown in Figure 1. 
At small 4, the two effects are equal in magnitude when 

(4  a 1) 
St2 72 

(1-e)- = - 
%iss 5 

(3.17) 

and the value of S t / h i s s  monotonically decreases with 4. On the other hand, the 
actual value of St  at which the two mechanisms cause an equal amount of dissipation 
can increase with 4, since the dissipation coefficient hiss increases with 4. The dashed 
line in figure 1 shows St  as a function of 4 for e = 0.97 and a / A  = 500. Here, we 
have used the results for hiss to be presented in the following subsection. 

It should be noted that the criterion for the equality of viscous and inelastic 
dissipation rates based on the theory for 1 - e  << 1 and S t  >> 1 tends to underestimate 
the importance of viscous stresses. For example, viscous dissipation is essential to 
give the multiplicity of steady states observed by Tsao & Koch (1995) for low volume 
fractions. In addition, Tsao & Koch (1995) showed that the nonlinear drag arising at 
finite Reynolds numbers tends to increase the importance of hydrodynamics relative 
to inelasticity. However, one important conclusion from the comparison of the two 
dissipation mechanisms is that for suspensions in which 4 is not too small, significant 
viscous effects will occur primarily when St/&iss is O( 1). Thus, it will be necessary to 
develop a theory for that case. This will be done in $4. 

3.1. Determination of hiss 

As mentioned earlier, we must estimate the rate of energy dissipation in a suspension 
in which the particles have a hard-sphere spatial and velocity distribution in the limit 
of small 1 - e  and large St .  For this purpose, we used the usual hard-sphere molecular 
dynamics code in which N particles were placed in a periodic unit cell and given 
random velocities with zero mean. In other words, the trajectories of the particles 
were determined by neglecting the viscous forces and the collision rules were based 
on perfectly elastic collisions. Each sphere was allowed to undergo several thousand 
collisions and the positions and velocities of the particles were stored at regular time 
intervals for later use in hydrodynamic calculations as described in the following 
paragraph. 

hiss was determined by solving the Stokes equations of motion for flow around 
particles with their positions and translational velocities given by the molecular- 
dynamics code described above. The rotational velocities of the particles were taken to 
be zero in these calculations. In a suspension of smooth, frictionless spheres, the solid- 
body collisions do not drive particle rotations. Thus, fluctuations in the rotational 
velocity in a sheared suspension will result only from hydrodynamic torques and, 
at least in a weakly dissipative system for which T >> y2a2, the rotational velocity 
fluctuations (multiplied by a )  will be small compared with the translational velocity 
fluctuations. The Stokes flow interactions among particles were computed using the 
method described in Mo & Sangani (1994) and Sangani & Mo (1994). The velocity 
was expressed in terms of point forces and force dipoles at the centres of the particles 
and lubrication force dipoles at the centre of the gap between close particles. As 
shown in these papers, the method gives an accuracy that is comparable to that 
obtained by the methods of Brady & Bossis (1988) and Ladd (1990). 

Results for hiss as a function of 4 for several different values of E ,  are shown 
in figure 2. These results are obtained by averaging over 100 configurations with 
N = 54 for each 4 and em. As one would expect, hiss increases with increasing 4 and 
decreasing em. The variation of hiss with E ,  for 4 = 0.15 and 4 = 0.5 is shown in 
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FIGURE 2. hiss as a function of 4 and em. The solid lines represent the values obtained from (3.18) 
using (3.22) and (3.24). 

Figure 3. It is clear that hiss diverges logarithmically with E,. Thus, we fit our results 
for different values of 4 and em according to 

hiss = k 1 ( 4 )  -k2(4)lnem (3.18) 

and plot kl and k2 as functions of d, in figures 4 and 5. 
The logarithmic divergence of hiss with em results from the energy dissipation 

due to the lubrication flows in the narrow gaps between particles and therefore it is 
relatively straightforward to obtain an analytical expression for k2. The viscous energy 
dissipation can be expressed in terms of the two-particle probability distribution f 2  

by means of an integral 

f u i s  = -n(F * C )  = - (F .C)f2(C,C1,r,0)dCdC1dr, (3.19) 

where F is the force exerted by the gas on a test particle with velocity C placed at 0 
in the presence of another particle with velocity C1 at r. We assume that the velocities 
of the particles are uncorrelated and satisfy the Maxwellian distribution 

s 

(3.20) 

and take f 2  = fM(C)fM(C1)P(r10), P being the pair probability distribution for 
the hard-sphere spatial distribution normalized by the number density n. For small 
particle separations 2ae, < r - 2a << a, F is given by (see, for example, Kim & 
Karrila 1991, chap. 9) 

1 
8(r - 2a)' 

F = -6npr(C - C1) - r (3.21) 
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FIGURE 3. hiss as a function of E,: (a) 4 = 0.15; ( b )  4 = 0.5. 

and hence upon substituting for f 2  and F, and performing the integration in (3.19), 
it is easy to show that the logarithmically divergent part of rvis is simply given by 

k2(4 )  = 4x3 (3.22) 

where x equals the radial distribution function at r = 2a. Since in this asymptotic 
limit of large S t  and small 1 - e, the particle configurations resemble the hard-sphere 
molecular system, we shall use the Carnahan-Starling approximation (cf. (3.9)) for x. 
The solid curve in figure 5 represents the above result with x given by (3.9) while the 
circles represent the values of k2 obtained by fitting the numerical results for hiss. 
The agreement between the two is excellent for all values of $ except at 4 = 0.5 
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FIGURE 4. kl as 
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a function of 4. The circles are obtained by fitting the computed 

according to (3.18) while the solid line represents (3.24). 
results 

$J 
FIGURE 5. k2 as a function of 4. The circles are obtained by fitting the computed values of hiss ac- 
cording to (3.18) while the solid line represents (3.22) with x determined from the Carnahan-Starling 
approximation (3.9). 

for which the computed value of x, i.e. k2 /$ ,  is lower than that predicted by (3.9) 
or (3.10): the computed value of x from the numerical results for k2 is 5.3 while the 
Carnahan-Starling, Ma & Ahmadi, and Woodcock expressions (cf. (3.9) and (3.10)) 
give the respective estimates of 6.0, 6.1, and 6.2. The reason for this discrepancy is 
the small system size ( N  = 54) used in our simulations. To show this, we carried 
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out calculations for the collision frequency in the hard-sphere system with e = 1 and 
St = co at 4 = 0.5 for N = 54 and N = 108. Assuming the Maxwellian velocity 
distribution, x is estimated from the collision frequency in simulations by means of 

(3.23) 

where fit is the rate of collisions. The numerical simulations for N = 54 and 108 
gave xs of respectively 5.4 and 5.9, the latter being in good agreement with the 
Carnahan-Starling approximation. 

The results for kl are best fitted by the expression 

3 135 
4 64 

k l ( 4 )  = 1 + -$' I2 + -$In@ + 11.264(1 - 5.14 + 16.57b2 - 2 ~ 7 7 4 ~ ) .  (3.24) 

The terms up to O(4ln4)  in the above expression are the same as in the expression 
for the average force on a particle in a fixed bed of particles in the presence of a mean 
fluid flow (see, for example, Howells 1974; Hinch 1977; Kim & Russell 1985) because 
the far-field velocity disturbances in both problems are similar and governed by 
Brinkman screening. The coefficients of the higher-order terms in (3.24) are obtained 
by curve fitting the numerical results for hiss. It is interesting to note that kl goes 
through a maximum near 4 = 0.35 so that the numerical values of kl vary over a 
rather narrow range from 1 to about 2.8. Thus, in very dense suspensions hiss is 
completely dominated by lubrication forces. Since the hydrodynamic interactions in 
suspensions with the velocity of the particles specified are governed by the Brinkmann 
screening at large distances from a test sphere, kl is expected to be relatively insensitive 
to the system size N (see, for example, Ladd 1990). 

A comparison between the computed values of hiss and those obtained by using 
(3.18), with kl and k2 evaluated from (3.24) and (3.22), is shown in figure 2. The 
agreement is seen to be very good except at 4 = 0.5, where, as mentioned earlier, our 
computed value of x (or k2) differs from that given by (3.9) owing to small number 
of particles used in simulations. 

3.1.1. A relation between 1 and em 
We close this section by noting a relation between the mean free path ;Z of the gas 

molecules and the lubrication cut-off ae, used in our model for viscous dissipation. 
Our calculations for hiss assumed that the standard lubrication approximations 
for rigid, smooth spherical particles in Stokes flow break down when the gap width 
between the particles become comparable to 2.5,~. There are a number of mechanisms 
for the breakdown of standard lubrication approximation, e.g. the roughness of the 
particles (Smart & Leighton 1989) and the finite compressibility of the particles (see 
Barnocky & Davis 1989 and references therein), and in principle it is possible to 
relate ern to the appropriate parameter responsible for the lubrication breakdown. 
The mean free path of a gas at standard atmospheric pressure and temperature is 
about 0.1 pm while the low-Re, finite-St approximation is likely to apply for a in the 
range of 10-100 pm. For particles with roughness smaller than 1, we expect ;Z/a to 
be the most important parameter in determining em. 

Sundararajakumar & Koch (1996) have recently examined in detail the motion of 
the gas in the narrow region between two smooth, rigid spherical particles approaching 
one another. Their analysis accounts for the finite mean free path 1 of the gas 
molecules and calculates the force on each particle as a function of the gap width 
between the particles. By comparing the total energy dissipated as two particles with 
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high St approach each other with the corresponding energy dissipated in our model 
we find that 

aem = 4.882 (St >> 1). (3.25) 

4. Approximate theory for moderately large St/&iss and (1 - e)-l 
The theory presented in $3 is asymptotically valid in the limits St >> 1 and 1 -e << 1. 

However, it takes no account of the deviations from Newtonian rheology and the 
resulting effects on the energy balance that occur for more moderate values of S t  
and 1 - e. Lun et al. (1984) have developed a theory using a moment approach to 
determine the first effects of finite particle inelasticity on the rheology of a granular 
material. We will adopt a similar approach to determine the combined effects of finite 
St and 1 - e on the moments of the velocity distribution. This approach will not be 
applicable to Stokes numbers smaller than about 2, which may be encountered in 
liquid-solid suspensions. However, the case of purely viscous suspensions at St = 0 
has already been extensively studied analytically (see a review by Brady & Bossis 
1988) as well as experimentally (e.g. Gadala-Maria & Acrivos 1980). 

Let f (t, xi, Ui, Qi) be the one-particle probability distribution function normalized 
such that 

dUdf2f (t, xi, Ui, Qi) = n(t, xi), (4.1) I 
where n( t, xi) is the number density of particles. Then f satisfies the usual conservation 
equation 

af af a a a c f  
- + ui- + -@if) + -@if) = -, at axi au, aai at 

where Ui represents the acceleration of the particle due to body and viscous forces 
acting on it and a,f /at represents the rate of change of the number of particles with 
velocity Ui at point xi due to collisions. It is convenient to introduce the fluctuation 
velocity Ci of the particle defined by 

ci = Ui - (Ui)(Xi), (4.3) 

where ( U i )  = ( l /n )  J f UidU is the average velocity of the particles. Since the fluctu- 
ations in the rotational velocities of the particles at finite St as determined from the 
direct numerical simulations ($5 )  do not appear to be significant, we shall neglect the 
influence of the rotational degree of freedom of the particles. Thus, the conservation 
equation for f in terms of (t,xi, Ci) is written as (see Chapman & Cowling 1970) 

For hard-sphere systems, the collisional contribution appearing on the right-hand 
side of (4.4) can be expressed in terms of an integral first used in the study of dense 
gases by Enskog (see Chapman & Cowling 1970, chap. 16, and Lun et al. 1984 for a 
formal derivation) : 

x4a2g * kdkdC1, (4.5) 

where, for the sake of brevity, we have suppressed the explicit dependence of x and 
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f on time. Here, x is the value of the radial distribution function at r = 2a. Note 
that for inhomogeneous suspensions, in which 4 is varying with position, the radial 
distribution function is also a function of position. Equation (4.5) accounts for both 
the rate of decrease in the probability density for a particle with (fluctuation) velocity 
C centred at x due to a collision with a particle centred at x - 2ak whose velocity 
is C1, and the rate of increase due to an ‘inverse’ collision in which the two particles 
with relative velocities C’ and Cl,, centred respectively at x and x + 2ak, collide 
resulting in particles with relative velocities C ,  and C1 after the collision. Here, k is 
a unit vector, 

g = Cl-C-2ay.k, C’ = C+q(k.g)k, C; = Cl-q(k.g)k, q = (l+e)/2. (4.6) 

The factor x(g k )  is proportional to the frequency with which collisions occur 
between particles with velocity C and C1. It may be noted that for dilute suspensions, 
x = 1 and f(x 2ak) = f((x), so that the above integral reduces to the well-known 
Boltzmann integral. 

In writing ( 4 3 ,  we have assumed that the two-particle probability distribution f*(C, 
C1, x, x - 2ak) can be approximated as the product of single-particle distributions. 
This is known as the molecular chaos approximation and is a widely accepted 
approximation in the granular flow literature (see e.g. Lun et al. 1984). In general, the 
two-particle distribution function will be affected by the hydrodyanamic interactions 
between the particles before they actually come into contact. For large St, this 
effect will be small (Koch 1990). We found in our numerical simulations that there 
was no noticeable deviation of the radial distribution function value at r w 2a for 
St/&iss > 2 and we thereby concluded that the effects of hydrodynamic interactions 
on the two-particle encounter were weak even at this moderate value of St/hiss. 

Let y ( C )  be any dynamic variable associated with the particle motion and define 
(v) by 

A balance equation for ( y )  is obtained by multiplying (4.4) with ydC and integrating: 

where 

Assuming that x and f vary on a length scale large compared to a, the right-hand 
side of (4.5) can be expanded in a Taylor series near x, and neglecting terms of third 
and higher order in a, it can be shown that (see Jenkins & Richman 1985 and Kremer 
& Rosa 1988 for details) 

where 

(4.10) 
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(4.12) 
Here x and f are evaluated at x, and y‘ is the value of w just after the collision. 
The assumption that f varies slowly with position is strictly valid only for T >> y2a2, 
but we will see that this expansion gives results that are in good agreement with 
simulations even at moderate values of S t / h i s s  for 4 = O(1). 

The mass, momentum, and energy equations for the particle-phase motion can now 
be derived by taking y to equal, respectively, m, mCi and mC2/2 .  Using mn = pp+,  
the mass conservation equation is given by 

The momentum conservation equation is given by 

(4.13) 

(4.14) 

where 

cr; = -pp4(CiC,) ,  O; = -mQj(Ci) (4.15) 
are the usual kinetic and collisional contributions to the stress. Note that S(Ci)  = 0 
since momentum is conserved during the collisions. 

The last term on the right-hand side of (4.14) can be expressed as 

aoh. 

axj pp@(  Ui) = -672pan%,, (Ui - ui) + -I-, (4.16) 

where (ui) is the average velocity of the suspension, brag is the average drag coefficient 
and a$ is the contribution to the particle-phase stress due to hydrodynamic interac- 
tions among particles. For zero Stokes number suspensions this stress is related to the 
average stresslet induced by the presence of the particles. For finite Stokes numbers 
there is an additional contribution arising from the hydrodynamic interactions which 
roughly speaking can be expressed as (xqF;), F; being the force on particle a due 
to hydrodynamic interactions (see Nott & Brady 1994 for the formal expression for 
this stress). Calculation of this contribution to the stress in bubbly liquids has been 
addressed in recent publications (Sangani & Didwania 1993; Zhang & Prosperetti 
1994; Bulthuis, Prosperetti & Sangani 1995). However, since this stress is U(St-’), 
small compared to kinetic and collisional stresses, and since we are most interested 
in moderate to high S t  in the present study, we will neglect the contribution from the 
hydrodynamic stress. Finally, the energy equation is given by (3.1) with 

q .  I - - 1 2 p p 4  [ ( C 2 C j )  + :Qj(C2)]  , r = -imS(C2)-mn(UjCj) = r i n e / a s + r v i s .  (4.17) 

To determine T in a steady shear, we must solve for f and cij. We shall adopt an 
approximate method developed by Grad (1949) to accomplish this. According to this 
method, f in a homogeneous suspension is assumed to be given by 

} f M 7  

a 2  
1 + i T a i j -  aciacj (4.18) 

where f~ is the isotropic Maxwellian distribution given by (3.20). It is easy to show 
that 

(4.19) 
1 

(CiCj) = - n / d C f ( C ) C i C j  = T(6ij + aij). 
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Thus, aij is related to the second moments of the velocity distribution. Note also that, 
with T defined as one-third the particle velocity variance, aii = 0. 

To determine aij, we substitute CiCj for y in (4.8) to obtain, in a steady homoge- 
neous suspension, 

2%iss 1 1 
Yik(CkCj)+Yjk(CiCk)+-(CiCj) = is(cicj)-; {YikQk(Cj) + YjkQk(Ci)} (4.20) 

7, 

where z, = m/(6npa).  In writing the last term on the left-hand side of (4.20) we have 
assumed that ((d&Cj + 8jkCi)iJk) = -(2/~,)&iss(CiCj), which implicitly assumes (i) 
that the suspension microstructure is nearly isotropic even at finite S t ,  and that (ii) 
h i s s  determined in the limit of S t  + co with the hard-sphere velocity distribution is 
applicable even for finite Stokes number suspensions. Substituting for f from (4.18) 
into (4.11) and (4.12) yields the following expressions for S and Q (Jenkins and 
Richman 1985): 

where q = ( 1  + e ) /2 .  The expressions above for S and Q neglect terms that are 
quadratic or higher order in aij and y i j .  The theory of Tsao & Koch (1994) for dilute 
suspensions in the ignited state neglected terms that depend on eij and set Q = 0 but 
included instead a term of O(a$) in the expression for S .  Their calculations suggest 
that keeping this quadratic term results in only minor numerical differences in the 
final results for the particle velocity variance and other average quantities. Tsao & 
Koch also constructed an approximate expression for S to account for the observed 
multiple steady states by including a term of O(y3) corresponding to the leading 
behaviour of S in the quenched state. (Recall that T << y2a2 for the quenched state.) 
The consequences of the different expressions for S in the theory presented here and 
that of Tsao & Koch will be discussed in more detail later. 

Substituting for S and Q in (4.20), and rearranging, we obtain 

24 
5an112 

eij [1 + $4xq(6q - 4 ) ]  + -4xqT'I2 [ ( 2 - ~ ) a i j  + $ ( I  -q)dij] 

+; [yikakj + Yjkaki] ( 1  + t 4 x q )  + %(dij  + aij) 

--#xaqT-'/2[yikejk f Yjkeki + ekkeij] -k ?4xq(q - f)ekksij = 0. 
16 

571112 
(4.23) 

The above equation together with the condition aii = 0 is sufficient to determine aij 
and T .  A general solution to this equation for arbitrary shear is difficult and therefore 
we shall now consider the special case of simple shear with e = 1. 

4.1. Simple shear flow of perfectly elastic particles 
To test the validity of the above approximate theory, we shall compare its predictions 
to the results obtained from numerical simulations in $5. The simulations with periodic 
boundary conditions are easy to carry out for the case of simple shear for which 

Y i j  = ~ d i l d j 2 .  (4.24) 
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FIGURE 6. The critical Stokes numbers as functions of 4. The quenched state exists only for 

S t  < S t ,  while the ignited state exists only for S t  > Sti.  

To keep the resulting algebra somewhat less tedious, and to facilitate a detailed 
examination of the viscous effects, we shall first consider the case of elastic particles, i.e. 
e = 1. The case of inelastic particles with finite S t  will be considered separately in $6. 

Substituting for yi, from (4.24) into (4.23), taking q = 1, and solving the resulting 
equations together with aii = 0 yields a23 = a13 = 0 and 

1 1 
a22 = a33 = --Zall = - 

l + O S t '  
(4.25) 

(4.26) 

(4.27) 
128 2--1 

25.n 
-- @ x S t  =o, 

where 

(4.28) 

Equation (4.27) is a cubic equation for o, or equivalently T1I2, and has therefore 
three roots. Only one root is real at very high E. T112 corresponding to this root 
asymptotically approaches (3.15) found in 93. The particle velocity variance is very 
large and therefore the collision time is much smaller than the viscous relaxation 
time. Thus, this root corresponds to the ignited state in the theory of Tsao & Koch 
(1994). This root is real and positive on1 for SS > Ei, where Ej as a function of $J 
is given in figure 6. As $J --+ 0, Sti --+ & = 4.8989.. . in agreement with the theory 
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FIGURE 7. The value of 6T1l2  (non-dimensionalized by ya) for the quenched 

and ignited states at S t  = Sti 

of Tsao & Koch (1994). (More exact calculations for the ignited state by including a 
term of O(a$)  in (4.21) resulted in si = d m  = 4.9425 ....) For very small values 
of 5, once again there is only one real positive root and since the velocity variance 
corresponding to this root is small, this is referred to as the quenched state. This root 
exists only for % < sq, with Eq as a function of 4 shown in figure 6. For small 4, 
this critical Stokes number is given by 4s; = (75~/256)'/* = 0.96. For 4 < 0.058, we 
find that Eq > si so that for such low volume fractions we have three real roots for 
Sti < s < sq and the final steady-state variance depends on the initial conditions: if 
the initial variance is sufficiently small, the final state is quenched; otherwise the final 
state is ignited. As shown by Tsao & Koch (1994), the third root, whose variance is 
intermediate between the quenched and ignited states, is unstable so that it will not 
be observed in numerical simulations. Finally, for a fixed value of 4, the steady-state 
variance will abruptly change at s = Ei from its value for the ignited state to that 
for the quenched state provided that 4 < 0.058. Figure 7 shows the magnitudes of 
T1/' for the quenched and ignited states at E = si where this sudden jump in the 
variance will occur. The jump in variance is seen to vanish at 4 = 0.058. 

According to the theory presented here 4s; = 0.96, and hence the conditions for 

observing multiple steady states are > si and 45' < 0.96. Tsao & Koch (1994) 
obtained instead an approximate criterion 4 S t 3  < 3.23. (Their numerical simulations 
without hydrodynamic interactions gave a more precise estimate of the numerical 
coefficient to be 1.5 instead of 3.23.) This and the magnitude the quenched-state 
variance in the two theories differ because of the different estimates of S(CiC, )  (cf. 
(4.21)) used in the two theories. As mentioned following (4.21), the term of O( Ti/') in 
the expression for S which dominates in the ignited state is the same in both theories 
but, whereas we have a correction of O ( y T ) ,  the theory of Tsao & Koch has the 
correction of O(y3), which we neglected by assuming that the distribution function 

- 
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varied slowly with position in (4.11). For dilute suspensions in the quenched state 
T << y2a2, and hence the criterion derived by Tsao & Koch is correct as 4 + 0. 
Finally, we may add here that since our theory does not account for the additional 
contributions of 0 ( y 3 )  in S ,  our estimate of 4 = 0.058 for the quenched- and ignited- 
state variances to be equal at s = si is an upper bound; the multiple steady states 
and the step change in variance with St are thus limited to very small 4. 

Approximate analytical expressions for the velocity variance in the ignited state 
can be obtained if we simplify (4.27) by neglecting the last term on the left-hand side 
of that equation. This yields T = 0 for the quenched state and 

for the ignited state. Here, 

768 12 
t = ( I  + + -4 x - -2' 2571 S t  

(4.29) 

(4.30) 

(4.31) 

The difference between the approximate and exact solutions of (4.27) diminishes with 
increasing S t  and both agree with the asymptotic expression (3.15) for St  >> 1. 

For the sake of comparison with the results of numerical simulations in $5, we 
also present expressions for the shear viscosity and normal stress differences. The 
components of the particle-phase stress are evaluated by combining (4.15) with (4.19), 
(4.22), and (4.25)-(4.28). Thus, the particle-phase shear viscosity is given by 

(4.32) 

Note that o and p, depend on T1f2 in a nonlinear manner, which is critical for 
explaining the multiple steady states described earlier. The particle-phase rheology 
also displays normal stress differences with 

(4.33) 

where we have defined the particle-phase pressure tensor Pij and pressure P by 
Pi, = -aij and P = (1/3)Pkk. Note that our approximate theory predicts P22 = P33. 
The more rigorous theory of Tsao & Koch (1994) including a term of O(a;) shows 
that in the ignited state at large St  and small 4 the leading-order estimates of the 
normal stress differences are given by 

p11 -p22 - p11 - p33 - 3 1+;4x - - 
P P 1 + &  1+44x'  

(4.34) Pi1 -P22 18 Pi1 - P33 117 16.71 ... 
P St2 ' P 7St2 St2 . 

= -  =--  - 

Thus the actual difference between P22 and P33 is expected to be small in magnitude 
compared to the difference between PI1 and or P33. It may be noted that in the 
limit of large S t ,  o -+ E/6,  and therefore (4.33) in the limit 4 + 0 agrees with the 
first equation in (4.34). In other words, the difference between our theory and the 
dilute theory for the ignited state is relatively small at large St. On the other hand, 
the quenched-state theory of Tsao & Koch which included the term of O(y3)  in (4.21) 
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predicts 

(4.35) 
Pi1 - P33 - 72 + 2 7 ~ S t  + 48St2 - Pi1 - P22 - 27nSt + 48St2 

- 
P 72 + 97cSt + 16St2’ P 72 + 97cSt + 16St2 ’ 

and therefore we expect our theory to deviate from the actual results whenever T is 
smaller than y2a2. 

5. Dynamic simulations for finite S t  and e = 1 
The method for computing hydrodynamic interactions among particles is described 

in detail in Mo & Sangani (1994) and Sangani & Mo (1994). The velocity of the 
gas was expressed in terms of flows due to force, torque, and stresslet singularities 
situated at the centre of the particles plus the flow induced by the lubrication 
singularities which were determined from the translational and rotational velocities 
of the particles. This resulted in a total of 17N unknowns to be determined. The 
no-slip boundary condition generated 11N equations among these unknowns and 
the other 6N conditions were generated by using finite difference approximations of 
the equations (2.3) for the linear and angular accelerations of the particles. More 
specifically, we used 

plus a similar equation for the angular momentum balance for each particle. Here, 
h is the time step, x is the position of the particle, and U(t  - h/2) is assumed to 
be known from the previous time-step calculation. Once the 17N resulting equations 
were solved simultaneously, U(t + h/2) and the position of the particle at t + h were 
estimated from 

U(t  + h/2) = 2U(t) - U(t - h/2), 

x(t + h) = x + hU(t + h/2 ) .  

(5.2) 

(5.3) 
The calculation for the position update using (5.3) was done by a standard hard- 

sphere molecular dynamics code which takes into account the possible collisions 
between the particles during the time step h. The velocity U(t  + h/2) was updated 
according to the collision rule if a collision occurred during the move. The time step 
h was chosen such that on average a particle underwent collisions roughly once in 30 
time steps. For smaller S t  and 4, for which the collisions occur less frequently, the 
calculations were repeated with smaller time steps to check for the accuracy of the 
trajectory calculations. A typical dynamic simulation was carried out for about 6000 
time steps. Various average quantities which included the particle velocity variance, the 
kinetic and collisional contributions to various stress components, and microstructure 
parameters such as the radial distribution function, were computed after discarding 
the results for the first several hundred to several thousand time steps for which the 
steady state was not yet attained. Finally, all simulations were carried out with 6-8 
initial configurations with N = 54. 

Figure 8 shows T112 (non-dimensionalized by ya) as a function of S t / h i s s  for 
4 = 0.01 and e = 1. For these simulations, we used em = 0.01 which corresponds to 
bjSs = 1.3. The solid line shows the prediction of the approximate theory of 94 (cf. 
(4.27)) while the dashed line corresponds to the asymptotic theory of 93 (cf. (3.15)) 
for large S t .  The simulation results indicated by circles are seen to be in excellent 
agreement with the approximate theory. This theory also predicts an abrupt change 
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RGURE 8. TI/* (non-dimensionalized by ya) as a function of St/&is, for d, = 0.01 and e = 1. 
The solid line is the prediction of the approximate theory for the ignited state which predicts the 
extinction of the ignited state at St/&(,, = 4.8, the dashed line is the asymptotic theory for large S t  
and circles are the simulation results. 

in the variance at S t / h i s s  of fi! 4.8. Our simulation corresponding to 5 = 4.7 indeed 
resulted in the quenched state. According to the theory of Tsao & Koch (1995), the 
quenched state T is given by 

T 
(5.4) 

This expression predicts T/(y2a2) equal to 0.035 for q5 = 0.01 and = 4.7 whereas our 
numerical simulations gave an average value of 0.002. As noted by Tsao & Koch, the 
quenched-state variance is sensitive to the system size with particles in small systems 
without hydrodynamic interactions eventually taking up positions which reduce the 
collisions, yielding thereby vanishingly small values of T .  The small variance observed 
in our simulations suggests that the hydrodynamic interactions do not significantly 
alter this behaviour of the quenched state. 

Figure 9(a) shows a comparison between the approximate theory and simula- 
tions for the particle-phase viscosity ps (normalized by ppya2) .  As mentioned earlier, 
throughout this study we have neglected the hydrodynamic contribution to the stress 
tensor. Thus, ps was determined by adding only the kinetic and collisional contri- 
butions of the particle-phase stress ~ 1 2 .  As explained earlier, this is reasonable for 
gas-solid suspensions with relatively large St .  The predictions of the approximate 
theory of 94 shown by the solid line are in excellent agreement with the simulation 
results. It may be noted that the particle-phase rheology displays a shear-thickening 
behaviour with the shear viscosity increasing as y2 at large S t  for a given gas-solid 
system with e = 1. (Note that is proportional to ySt  and S t  is proportional to y.) 
Figure 9b shows the comparison for the normal stress differences (P11 - P22)/P and 
  PI^ - P33)/P as functions of St/&,. Our approximate theory predicts that the two 
normal stress differences are equal. The solid line represents these stress differences 
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FIGURE 9. (a) The particle-phase shear viscosity ps (non-dimensionalized by ppyaZ) as a function 
of S t / k i s s  for Cp = 0.01 and e = 1. The solid line is the prediction of the approximate theory and 
the circles are the simulation results. ( b )  The normal stress differences, ( P I ,  - P22)/P (squares) and 
(P11 - P33)/P (circles), as functions of St/&,. The solid line is the approximate theory prediction 
obtained by solving directly (4.27) while the dashed line is the prediction based on an analytical 
expression obtained by discarding the last term on left-hand side of (4.27). 

obtained by solving the cubic equation (4.27) while the dashed line represents an 
approximation in which the last term on the left-hand side of (4.27) is neglected so 
that a closed-form analytical expression for the normal stress differences similar to 
(4.29) can be obtained. The two methods led to nearly indistinguishable results for 
T and ,us shown in figures 8 and 9(a), but do result in different predictions for the 
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that the final state depends on the initial T .  4 = 0.01 in these simulations. 
FIGURE 10. T1I2 as a function of time for two different values of = St/&,,,. For % = 5, we see 

normal stress differences. The simulation results for the two stress differences are seen 
to be in good agreement with the approximate theory derived from solving (4.27) 
exactly. It may be noted that the normal stress differences shown in figure 9b are 
plotted only for E 2 4.8 for which the final steady state is ignited and therefore the 
expressions for the quenched state (cf. (4.35)) are not relevant. 

The above results were obtained by choosing the initial particle velocity distribution 
close to that predicted by the theory for the ignited state. For 4 = 0.01, there is a 
narrow range of values of S t  for which multiple steady states can occur, and, in this 
range, the final state depends on the initial conditions. This is shown in figure 10 
where we plot T' /* /ya  as a function of time and initial variance for two different 
values of St/ lQiSs.  For these simulations, we found that at E = 5 the final state is 
always a quenched state whenever the initial variance is zero or has a very small 
value. However, if the initial variance is not small, the final state is the ignited 
state. On the other hand, the final state for % = 8 is ignited regardless of the initial 
variance. For St = 6 and 7 we found that the final steady state depended on the initial 
configuration of the particles. For example, of seven configurations with initial zero 
variance, one led to an ignited state and six to quenched state at E = 6 while four 
led to ignited and three to quenched for E = 7. These simulations were done with a 
rather small system of 54 particles, and thus the precise value of Sq beyond which 
only the ignited-state solution exists could not be determined accurately. From the 
above discussion, however, one might expect G, to be between 5 and 8. The direct- 
simulation Monte Carlo (DSMC) calculations for particles without hydrodynamic 
interactions conducted by Tsao & Koch (1995) exhibited multiple steady states at 
4 = 0.01 for a narrow range of Stokes numbers between about 5 and 6. The wider 
range of Stokes numbers for which multiple steady states are observed in the present 
dynamic simulations for hydrodynamically interacting particles must result from 
either the finite size of the system (which has a more serious effect in dynamic than 
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in DSMC simulations) or from the hydrodynamic interactions attenuating the source 
of fluctuating energy due to shear-driven collisions. 

We now consider non-dilute suspensions. For these dense suspensions only a single 
steady state is expected. The results for $ = 0.1 are shown in figure 11. The dynamic 
simulations used em = 0.01 which corresponds to hiss = 2.5. Once again the results 
of the approximate theory and the asymptotic theory for large E are shown by the 
solid and dashed lines, respectively. Also shown in the figure is the prediction of the 
approximate theory with the last term on the left-hand side of (4.27) neglected for 
which the analytical expressions for T (cf. (4.29)) and the particle-phase stress are 
easy to obtain. This approximation is indistinguishable from that indicated by the 
solid line except for small where it is indicated by the dotted line. Finally, the 
numerical simulation results obtained by incorporating full hydrodynamic interactions 
indicated by circles are also compared to the simple simulations in which the detailed 
hydrodynamic interactions are ignored and the particle trajectories are evaluated 
based on a mean drag law (i.e. Fi = -67rpah,,,(Ui - yijxj)). It is interesting that 
these simple simulations, in which the hydrodynamic interactions are incorporated 
only by enhancing the drag by a factor obtained from the analysis of the rate of 
energy dissipation in a hard-sphere system described in 63.1, give remarkably accurate 
estimates of various average quantities even when % is as small as 3. We see that the 
variance predicted from the approximate theory is slightly below that obtained from 
numerical simulations at small %. This slight difference could have resulted from 
neglecting the higher-order terms in the expression for S (  CiCj)  used in our theory. 
It is interesting to note that the difference between the asymptotic theory and the 
approximate theory is much smaller for $ = 0.1 than for $ = 0.01. Figure l l(c) 
shows the kinetic and collisional contributions to the particle-phase shear viscosity, or 
equivalently ( ~ 1 2 .  The solid lines indicate the predictions of the approximate theory. We 
see that the theory accurately predicts not only the overall properties such as T and 
p, but also the relative importance of the kinetic and collisional contributions to the 
stress. Finally, the normal stress differences are plotted in figure ll(d). Here, the filled 
symbols indicate results obtained by simulations including the detailed hydrodynamic 
interactions while the open symbols indicate results obtained from simple simulations 
using the mean drag law. The solid line represents the prediction of the approximate 
theory developed in the present study which gives equal normal stress differences, 
i.e. P22 = P33, while the dashed lines represent the theory of Tsao & Koch for the 
quenched state in which T is small compared to y2a2. We see that the approximate 
theory developed here begins to fail only for St/&,, less than about 3. The simulation 
results for S t / h i s s  = 1 for which T / ( y 2 a 2 )  is small compared to 1 are seen to be in 
qualitative agreement with the small-$ small-T theory of Tsao & Koch (cf. (4.35)). 

The results for $ = 0.25 and e = 1 are shown in figure 12. These results were 
obtained with E ,  = 0.01 which corresponds to hiss = 5.0. We see that the difference 
between the asymptotic theory and the approximate theory is further reduced and that 
the results of simulations are once again in very good agreement with those predicted 
by the theory. Also the results obtained with simulations using the mean drag law are 
once again seen to be in excellent agreement with those obtained by the simulations 
which account for the hydrodynamic interactions. Note also that since hiss increases 
with increasing 4, S t  = %hiss also increases for a given value of %. As a result 
the particles are expected to travel in a nearly straight line between the successive 
collisions for dense suspensions, and this should result in a better agreement between 
the results of simulations which include the effects of hydrodynamic interactions on 
the dynamic particle motion and those that only incorporate their influence on the 
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rate of energy dissipation in a hard-sphere suspension. It is also important to note that 
the magnitude of the normal stress differences for 4 = 0.25 (cf. figure 12c) are small 
compared to those found for 4 = 0.1. Also, in general, the normal stress difference 
(P11 - P22) indicated by squares is more closely predicted by the approximate theory 
than is P11 - P33 indicated by circles in figures l l ( d ) ,  12(c), and 13(b). Finally, the 
results for 4 = 0.45 are shown in figure 13. For these simulations, we used E ,  = 0.01 
which corresponds to hiss = 11.2. The approximate and asymptotic theory predictions 
for T are nearly equal and thus indistinguishable for this case. The simulation results 
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FIGURE 11. Comparison between various theories and simulation results for 4 = 0.1 and e = 1. 
The solid line represents the approximate theory predictions, the dashed line represents the large 
S t  asymptotic theory and the dotted line represents the simplified approximate theory obtained by 
neglecting the last term on the left-hand side of (4.27). The filled symbols represent the results from 
the detailed hydrodynamic interaction simulations while the unfilled symbols represent the results 
from simulations using the mean drag law. (a) as a function of hiss; (b)  the particle-phase 
shear viscosity ps as a function of S t / h i s s ;  ( c )  the kinetic ( k )  and collisional (c) contributions to 
the particle-phase shear stress 0 1 2  (non-dimensionalized by ppy2a2);  ( d )  normal stress differences 
( P I [  - &)/P (squares) and (P11 - & ) / P  (circles). In ( d )  the dashed lines correspond to the theory 
of Tsao & Koch for T << y2a2 (cf. (4.35)). 
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FIGURE 12(a,b). For caption see facing page. 

for T are seen to be slightly higher than the theoretical predictions with a maximum 
deviation in T112 of about 20% at St = 5. We have analysed various microstructure- 
related quantities, such as radial distribution function, in an attempt to understand 
the origin of this difference between the predictions of the theory and the results 
of simulations, but have found no significant difference between the microstructure 
of the sheared suspensions and the equilibrium hard-sphere systems. The results for 
normal stress differences are shown in figure 13(b). Although the scatter in numerical 
simulation results is too large to test the theoretical predictions, we see that the 
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FIGURE 12. Comparison of various theories and simulation results for 4 = 0.25 and e = 1. 

Refer to figure 11 caption for the symbol and line conventions. 

magnitude of the normal stress difference is generally small for such high (b. This 
trend of decreasing normal stress differences with increasing volume fraction at a 
fixed value of St/&, is similar to the observation that the normal stress difference in 
granular flow decreases with the increase in (b at a fixed value of e (Walton & Braun 
1986). Note that this trend of decreasing normal stress differences with increasing (b is 
opposite to that for the zero Stokes number suspensions for which the normal stress 
differences increase with (b. In the latter case the stresslet induced by the presence of 
the particles determines the magnitude of the particle stress. 

In addition to comparing the prediction of various average quantities with the 
predictions of the theory, we can also do a more detailed analysis of the assumptions 
used in developing the approximate theory. For example, the theory ignored the 
dissipation resulting from the fluctuations in the angular velocig. For 9 = 0.25 
and St/&,,, = 10, our detailed simulations gave the value of (I: U ) / ( L  * a), which 
represents the ratio of energy dissipation by fluctuations in translational and rotational 
velocities, of about 250. Here, a hat represents the fluctuation from the mean value 
and L is the torque acting on the particles. The values of the same ratio at (b = 0.45 
for S t / h i s s  equal to 5, 7 and 10 were found to be, respectively, 1533, 865, and 771. 
Also, we found that (U2) /h2a2  = 1167 at (b = 0.45 and S t / h j s s  = 7. 

6. Theory and simulations for finite inelasticity and finite S t  
We now consider the more general case of simple shear flows of gas-solid suspen- 

sions with finite viscous and inelasticity effects. We will express the root-mean square 
of the fluctuations in terms of mu defined by 
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FIGURE 13. Results for 4 = 0.45. Refer to figure 11 caption for the symbol and line conventions. 

Substituting for yij from (4.24) into (4.23) and solving the resulting equation together 
with the condition aii = 0 yields 
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e 
RGURE 14. The critical value of St  below which the ignited state ceases to exist as a function of 

the coefficient of restitution e for dilute (4  -+ 0) suspensions. 

The reduced root-mean-square of the fluctuations now satisfies the quartic equation 
4 

2 
dl = 3(2 - q ) E 1  [3= - 2a42 + :$y (1 + : $ x )  (1 - q)(3q + l)] , (6.7) 

do = - 3 ~ $ ~ S t ~ ( 2  - q). (6.8) 
Equations (6.2)-(6.4) reduce to (4.25)-(4.27) for the special case of elastic particles, 
i.e. q = (1 + e)/2 = 1. For small 4, do can be set to zero and the resulting quartic 
equation has four real roots for S t  > Sti(e), one negative, one corresponding to a 
quenched state wq = 0, and two positive. St i  is determined from the condition that 
the two real positive roots are equal at St  = Sti. The results are shown in figure 14. 
The variation of Sti with e is nearly linear 

Sti  = 8.7 - 3.8e. 

The approximate theory for finite S t  and 1 - e can be tested once again with the 
results obtained from numerical simulations. As the results of the previous section 
show, the most critical test of the theory can be made at smaller values of 4 where 
the deviation between the approximate theory and the asymptotic theory based on 
Newtonian rheology is the greatest. Therefore, we carried out simulations only for 
4 = 0.01. The results are shown in figure 15 where we see that the simulations are in 
very good agreement with the theoretical predictions. These simulations were carried 

(6.9) 
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FIGURE 15(a,b). For caption see facing page. 

out by neglecting hydrodynamic interactions as our earlier calculations show that the 
detailed hydrodynamic interactions do not affect the results. At any rate, we have 
also carried out a few simulations with detailed hydrodynamic interactions and found 
essentially the same results. 

7. Concluding remarks 
We have extended the theory of rapidly sheared granular flows in which the effects 

of the inelastic particle collisions dominate to flows with significant viscous effects. 
The approximation derived using Grad's moment method to solve for the particle 
velocity distribution function is shown to give surprisingly accurate results even when 
the particle-phase temperature T is not much larger than y2a2. The good agreement 
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FIGURE 15. Comparison between the theory and simulations for inelastic particles with finite Stokes 
numbers at q5 = 0.01. (a) T1/2 versus St/%,,; (b )  (P11 - P Z 2 ) / P  versus S t / h i s s ;  (c) T112 versus e ;  
( d )  (PI1 - P22)/P versus e. 

between our theory and numerical simulations indicates that hydrodynamic interac- 
tions can be incorporated in the theory of rapidly sheared particulate suspensions in 
a fully analytic manner through hiss given by (3.17), (3.22), and (3.24). 

The simulations were carried out with a rather small system of 54 particles in a 
periodic box since calculation of the detailed hydrodynamic interactions are com- 
putationally very expensive. The studies of granular flows with much large systems 
by Hopkins & Louge (1991), Walton, Kim & Rosato (1991), and Hopkins, Jenkins 
& Longe (1991) have shown that homogeneous granular suspensions are unstable 
in the presence of mean shear, and that large anisotropic clusters form as a con- 
sequence. The imposed periodicity can have a significant stabilizing influence, and 
thus even if such instabilities were to exist in viscous suspensions, it would not have 
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been possible to observe them in our simulations with small systems. We plan to 
address the problem of stability of gas-solid suspensions with significant viscous 
effects through a linear stability analysis of the average equations of motion in our 
future work. 
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